If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y^2+18y+72=0
a = 1; b = 18; c = +72;
Δ = b2-4ac
Δ = 182-4·1·72
Δ = 36
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{36}=6$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-6}{2*1}=\frac{-24}{2} =-12 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+6}{2*1}=\frac{-12}{2} =-6 $
| 2g=2/3 | | 2/3x+1/2=3/7-1/3x+3/7 | | |2x+1|=x+3 | | -6x+5+5x=3 | | 15x2-11x+18=0 | | 2+5x=-14=x | | 6x-7x-88=110-9x | | 3x(x+6)=5(x-4) | | x+20/100x=26 | | (3x-2)^2=57 | | (3x-1)(2x+7)=1 | | 4.6q-4.3-5.9q=-0.3q-4.3 | | 6=-x-8 | | 1 (2x+2)=-4 2 | | 3x4=22 | | 12c+68=32-12 | | 3x+4=10x-53 | | Y=55+0.25x | | -7x+13+8x=5+x+8 | | 4n+2=6(1/2n-2/3) | | m-2/5=m+1/3 | | 2-(9+6x)=35 | | 50=x+6x+8 | | 25/8=2x-2/3x | | 3|7-5/4x|+8=17 | | Y=2x-3+5 | | 2m-2/5=4-m/3 | | 12x+68=32-12 | | y^2+18+72=0 | | (x-5)(x+2)=4(3x-16) | | 6x=4x=10 | | -2(3n-1)+2n=94 |